99 points!! Help ASAPSolve the system of equations using the Linear Combination Method.5. 4x-9y=1 -4x+6y=-2 6. 3x-2y=142x+2y=6

Question
Answer:
· PROBLEM 5:

[tex]\begin{cases}&4x-9y=1\\&-4x+6y=-2\end{cases}[/tex]

[tex]\underline{\textbf{Combination\ method:}}\\ \\.\qquad\not{4x}-9y=1\\.\quad\ -\not{4x}+6y=-2\\ ============\\.\qquad\quad\ -3y=-1\\ \\.\qquad\qquad\ \ y= \dfrac{-1}{-3}\\ \\ \\.\quad\qquad\qquad\ y= \dfrac{1}{3}\quad\checkmark\\ \\ \\\textbf{Add\ "y"\ in\ Eq.\ 1:}\\ \\4x-9\left( \dfrac{1}{3}\right)=1\\ \\ \\4x-\not{9}\left( \dfrac{1}{\not{3}}\right)=1\\ \\4x-3(1)=1\\ \\4x-3=1\\ \\4x=1+3\\ \\4x=4\\ \\x= \dfrac{4}{4}\\ \\x=1\quad\checkmark[/tex]

[tex]\mathbb{ANSWER:}\Longrightarrow\boxed{\boxed{\boldsymbol{x=1\ ;\ y= \dfrac{1}{3} }}}[/tex]

· PROBLEM 6:

[tex]\begin{cases}&3x-2y=14\\&2x+2y=6\end{cases}[/tex]

[tex]\underline{\textbf{Combination\ method:}}\\ \\.\quad\quad\ 3x-\not{2y}=14\\.\quad\quad\ 2x+\not{2y}=6\\ ============\\.\quad\quad\ 5x=20\\ \\.\quad\ \quad\ x= \dfrac{20}{5}\\ \\.\quad\ \quad\ x=4\quad\checkmark\\ \\ \\\textbf{Add\ "x"\ in\ Eq.\ 2:}\\ \\2(4)+2y=6\\ \\8+2y=6\\ \\2y=6-8\\ \\2y=-2\\ \\y= \dfrac{-2}{2}\\ \\y=-1\quad\checkmark[/tex]

[tex]\mathbb{ANSWER:}\Longrightarrow\boxed{\boxed{\boldsymbol{x=4\ ;\ y=-1}}}\\ \\ \\\textbf{HOPE\ THIS\ HELPS...!!}[/tex]
solved
general 11 months ago 2267