find the derivative of 2x+x^2/x
Question
Answer:
Answer:[tex]\displaystyle \frac{dy}{dx} = 1[/tex]General Formulas and Concepts:CalculusDifferentiationDerivativesDerivative NotationDerivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]Basic Power Rule:f(x) = cxⁿf’(x) = c·nxⁿ⁻¹Step-by-step explanation:Step 1: DefineIdentify[tex]\displaystyle y = \frac{2x + x^2}{x}[/tex]Step 2: DifferentiateFactor: [tex]\displaystyle y = \frac{x(2 + x)}{x}[/tex]Simplify: [tex]\displaystyle y = 2 + x[/tex]Derivative Property [Addition/Subtraction]: [tex]\displaystyle y' = \frac{d}{dx}[2] + \frac{d}{dx}[x][/tex]Basic Power Rule: [tex]\displaystyle y' = 1[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II) Unit: Differentiation
solved
general
11 months ago
3735