[tex] \sqrt{5} \times \sqrt[4]{5} [/tex]
Question
Answer:
Answer: " 3.344 " .________________________________________Step-by-step explanation:_______________________________________Note: √5 = [tex]5^{(1/2)}[/tex] . → {Since: [tex]\sqrt{5} = \sqrt[2]{(5^1)} = \sqrt[2]{5}[/tex] } ; and note the following property of "roots" :_______________________________________ → [tex]\sqrt[n]{x^y} = x^{(y/n)}[/tex] ' _______________________________________ [tex]\sqrt[4]{5} = 5^{(1/4)}[/tex] ._______________________________________ → [tex]\sqrt{5} * \sqrt[4]{5}[/tex] ; = [tex]5^{(1/2)}[/tex] * 5^{(1/4) ; = [tex]5^{[(1/2) +(1/4)]}[/tex] ;_______________________________________Note: Refer to the following property of exponents: → xᵃ * xᵇ = x⁽ᵃ ⁺ ᵇ⁾_______________________________________Now, (1/2) + (1/4) = ? ; Note: (1/2) = (?/4) ?? ; → Look at the "denominators" ; 2 * ? = 4 ? ' → 4 ÷ 2 = ? ; → 4 ÷ 2 = 2 . → So: 2 * 2 = 4; ; → Now, look at the "numerators" ; 1 * 2 = 2 ; So, (1/2) = (2/4) ; → (1/2) + (1/4) = (2/4) + (1/4) = (2 + 1) / 4 = 3/4 ._______________________________________So: [tex]5^{[(1/2) +(1/4)]}[/tex] ; = [tex]5^{3/4)]}[/tex] ; = 3.34370152488 ; (using calculator) ; → round to: " 3.344 ". ________________________________________
solved
general
10 months ago
5946