The coordinates of point S are (8.4). What are theM 17, 3) is the midpoint of RScoordinates of R?

Question
Answer:
Answer: Co-ordinates of point R is (26,2) Step-by-step explanation: Given point: Endpoint S(8,4) Mid-point M of segment RS (17,3) Let endpoint [tex]R[/tex] have co-ordinates [tex](x_2,y_2)[/tex] Using midpoint formula: [tex]M=(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex] Where [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are co-ordinates of the endpoint of the segment. Plugging in values to find the midpoint of segment KN. [tex]M=(\frac{8+x_2}{2},\frac{4+y_2}{2})[/tex] We know [tex]M(17,3)[/tex] So, we have [tex](17,3)=(\frac{8+x_2}{2},\frac{4+y_2}{2})[/tex] Solving for [tex]x_2[/tex]  [tex]\frac{8+x_2}{2}=17[/tex] Multiplying both sides by 2. [tex]\frac{8+x_2}{2}\times 2=17\times 2[/tex] [tex]8+x_2=34[/tex] Subtracting both sides by 8. [tex]8+x_2-8=34-8[/tex] ∴ [tex]x_2=26[/tex] Solving for [tex]y_2[/tex]  [tex]\frac{4+y_2}{2}=3[/tex] Multiplying both sides by 2. [tex]\frac{4+y_2}{2}\times 2=3\times 2[/tex] [tex]4+y_2=6[/tex] Subtracting both sides by 4. [tex]4+y_2-4=6-4[/tex] ∴ [tex]y_2=2[/tex] Thus co-ordinates of point R is (26,2)  (Answer)
solved
general 10 months ago 9746