What are the domain and range of the function f(x)=1/4(x^3+6x^2+5x-4)

Question
Answer:
Answer:Domain and Range of f(x) is all real numbers i.e [tex](-\infty, \infty)[/tex]Option 4 is correct.Step-by-step explanation:Given the function [tex]f(x)=\frac{1}{4}(x^3+6x^2+5x-4) [/tex]we have to find domain and range of the above function.The domain of a function is the complete set of possible values of the independent variable i.e of x. The denominator function can't be equals to 0 when taking the values of x. Β [tex]f(x)=\frac{1}{4}(x^3+6x^2+5x-4) [/tex]Here the function defines at each and every value of x therefore Domain of f(x) is all real numbers i.e [tex](-\infty, \infty)[/tex]The range of a function is the complete set of all resulting values of the dependent variable i.e of y, after substituting the values of the domain.Range of f(x) is all real numbers i.e [tex](-\infty, \infty)[/tex]Option 4 is correct.
solved
general 11 months ago 5878