What is the perimeter of the trapezoid with vertices Q(8, 8), R(14, 16), S(20, 16), and T(22, 8)? Round to the nearest hundredth, if necessary.
Question
Answer:
check the picture below.so... you can pretty much see how long RS and QT are, you can just count the units off the grid.
now, let's find QR's length
[tex]\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &Q&(~ 8 &,& 8~) % (c,d) &R&(~ 14 &,& 16~) \end{array}~~ % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ QR=\sqrt{(14-8)^2+(16-8)^2}\implies QR=\sqrt{6^2+8^2} \\\\\\ QR=\sqrt{36+64}\implies QR=\sqrt{100}\implies QR=10[/tex]
and let's also find the length for ST
[tex]\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\\\ \begin{array}{ccccccccc} &&x_1&&y_1&&x_2&&y_2\\ % (a,b) &S&(~ 20 &,& 16~) % (c,d) &T&(~ 22 &,& 8~) \end{array}~ d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ ST=\sqrt{(22-20)^2+(8-16)^2}\implies ST=\sqrt{2^2+(-8)^2} \\\\\\ ST=\sqrt{4+64}\implies ST=\sqrt{68}\implies ST=\sqrt{4\cdot 17} \\\\\\ ST=\sqrt{2^2\cdot 17}\implies ST=2\sqrt{17}[/tex]
so, add the lengths of all sides, and that's the perimeter of the trapezoid.
solved
general
11 months ago
6310