what is the solution to log2(9x)-log2^3=3?
Question
Answer:
Answer:[tex]x = \frac{8}{3}[/tex] is the solution to [tex]\log_2 9x - \log_2 3 = 3[/tex]Step-by-step explanation:Using the logarithmic rules:[tex]\log \frac{m}{n} = \log m -\log n[/tex]if [tex]\log_b x = a[/tex] then;[tex]x = b^a[/tex]Given the equation:[tex]\log_2 9x - \log_2 3 = 3[/tex]Solve for x:Apply the logarithmic rules:[tex]\log_2 \frac{9x}{3} = 3[/tex]⇒[tex]\log_2 3x = 3[/tex]Apply the logarithmic rules;[tex]3x = 2^3[/tex]⇒[tex]3x = 8[/tex]Divide both sides by 3 we have;[tex]x = \frac{8}{3}[/tex]Therefore, the solution for the given equations is, [tex]x = \frac{8}{3}[/tex]
solved
general
11 months ago
4699