The mass of a gallon of whole milk is 3.9 Γ 10^3 grams. Each measurement below is the mass of a large metal storage container of whole milk. Drag each measurement to the correct container.
Question
Answer:
Answer:[tex]9.36 \times 10^{6}[/tex] grams of milk is [tex]2.4 \times 10^{3}[/tex] gallons.[tex]1.4625 \times 10^{4}[/tex] grams of milk is 3.75 gallons.Step-by-step explanation:The mass of a gallon of milk is [tex]3.9 \times 10^{3}[/tex] grams.Then [tex]1.4625 \times 10^{2}[/tex] grams of milk is [tex]\frac{1.4625 \times 10^{2}}{3.9 \times 10^{3}} = 0.0375[/tex] gallons.Now, [tex]9.36 \times 10^{6}[/tex] grams of milk is [tex]\frac{9.36 \times 10^{6}}{3.9 \times 10^{3}} = 2.4 \times 10^{3}[/tex] gallons.Again. [tex]9.36 \times 10^{9}[/tex] grams of milk is [tex]\frac{9.36 \times 10^{9}}{3.9 \times 10^{3}} = 2.4 \times 10^{6}[/tex] gallons.And [tex]1.4625 \times 10^{4}[/tex] grams of milk is [tex]\frac{1.4625 \times 10^{4}}{3.9 \times 10^{3}} = 3.75[/tex] gallons.And [tex]1.4625 \times 10^{3}[/tex] grams of milk is [tex]\frac{1.4625 \times 10^{3}}{3.9 \times 10^{3}} = 0.375[/tex] gallons.Again [tex]9.36 \times 10^{0}[/tex] grams of milk is [tex]\frac{9.36 \times 10^{0}}{3.9 \times 10^{3}} = 2.4 \times 10^{-3}[/tex] gallons. (Answer)
solved
general
10 months ago
3026